Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 451: 139403, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38653104

RESUMO

In this study, the impact of three unsaturated fatty acids (Oleic acid: OA, Eicosapentaenoic acid: EPA, Docosahexaenoic acid: DHA) on the oxidation and structure of rainbow trout myofibrillar protein (MP) was explored. The findings revealed a notable increase in carbonyl content (P < 0.05) and a significant decrease in total sulfhydryl content (P < 0.05) of MP with the concentration increase of the three unsaturated fatty acids. Endogenous fluorescence spectroscopy and surface hydrophobicity analyses showed that unsaturated fatty acids can cause unfolding and exposure of hydrophobic groups in MP. In addition, SDS-PAGE showed that disulfide bonds were associated with MP cross-linking and aggregate size induced by unsaturated fatty acids. Overall, three unsaturated fatty acid treatments facilitated the oxidation of myofibrillar proteins, and the extent of protein oxidation was closely associated with the concentration of unsaturated fatty acids.

2.
Acta Neurochir (Wien) ; 166(1): 140, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491189

RESUMO

OBJECTIVE: Tuberculum sellae meningiomas (TSMs) usually compress the optic nerve and optic chiasma, thus affecting vision. Surgery is an effective means to remove tumors and improve visual outcomes. On a larger scale, this study attempted to further explore and confirm the factors related to postoperative visual outcomes to guide the treatment of TSMs. METHODS: Data were obtained from 208 patients with TSMs who underwent surgery at our institution between January 2010 and August 2022. Demographics, ophthalmologic examination results, imaging data, extent of resection, radiotherapy status, and surgical approaches were included in the analysis. Univariate and multivariate logistic regressions were used to assess the factors that could lead to favorable visual outcomes. RESULTS: The median follow-up duration was 63 months, and gross total resection (GTR) was achieved in 174 (83.7%) patients. According to our multivariate logistic regression analysis, age < 60 years (odds ratio [OR] = 0.310; P = 0.007), duration of preoperative visual symptoms (DPVS) < 10 months (OR = 0.495; P = 0.039), tumor size ≤ 27 mm (OR = 0.337; P = 0.002), GTR (OR = 3.834; P = 0.006), and a tumor vertical-to-horizontal dimensional ratio < 1 (OR = 2.593; P = 0.006) were found to be significant independent predictors of favorable visual outcomes. CONCLUSION: Age, DPVS, tumor size, GTR, and the tumor vertical-to-horizontal dimensional ratio were found to be powerful predictors of favorable visual outcomes. This study may help guide decisions regarding the treatment of TSMs.


Assuntos
Neoplasias Meníngeas , Meningioma , Neoplasias da Base do Crânio , Humanos , Pessoa de Meia-Idade , Meningioma/complicações , Meningioma/diagnóstico por imagem , Meningioma/cirurgia , Neoplasias Meníngeas/complicações , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/cirurgia , Resultado do Tratamento , Sela Túrcica/diagnóstico por imagem , Sela Túrcica/cirurgia , Sela Túrcica/patologia , Procedimentos Neurocirúrgicos/métodos , Neoplasias da Base do Crânio/cirurgia , Estudos Retrospectivos
3.
World J Clin Cases ; 12(4): 795-800, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38322680

RESUMO

BACKGROUND: The majority of gastric neuroendocrine tumors (G-NENs) are present in various lesions under endoscopy, and they can be polypoid uplifts, submucosal tumors or papules, erosions, and ulcers. The lesions are mostly confined to the mucosal or submucosal layer, usually less than 2 cm, and exclusively localized to the gastric body or fundus. In type 1 G-NENs, about 22% of cases have no visible lesions under an endoscope, and such lesions can only be detected via biopsies (microcarcinoids). CASE SUMMARY: A 67-year-old female patient with appetite loss for more than half a year and personal history of hyperthyroidism was admitted to our hospital. After admission, a random multi-point biopsy was performed on the gastric body, fundus, angle, and antrum through gastroscopy. Pathological examination showed chronic severe atrophic gastritis in the fundus and body of the stomach. The small curvature of the gastric body, the anterior wall of the gastric body, and the posterior wall of the gastric body displayed proliferation of intestinal chromaffin cells. The curvature of the gastric body showed neuroendocrine tumor G1 (carcinoid), while the antrum and angle of the stomach showed mild atrophic gastritis with mild intestinal metaplasia. Immunohistochemical examination showed that the greater curvature of the gastric body was Syn (+), CgA (+), and Ki-67 (+, approximately 1%), which is consistent with neuroendocrine tumors (grade 1). Regular gastroscopy and biopsy should be performed every one to two years to monitor G-NENs. CONCLUSION: In the case under study, the patient did not have any visible raised lesions under a gastroscope, and the lesions were found only after a random biopsy. This article combines the endoscopic manifestations and clinical features of the lesions in this case to improve the diagnosis of G-NENs.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38366346

RESUMO

Frailty syndrome refers to the nonspecific state of increased body vulnerability and decreased antistress and recovery abilities after stress during aging. Sarcopenia is the major component of frailty and is characterized by the gradual loss of muscle mass, strength, and function with age. Inflammaging is the gradual increase in inflammatory status during aging, and it disrupts immune tolerance, causes physiological changes in tissues, organs, and normal cells, and is related to frailty and sarcopenia. The gut microbiota is an extremely complex and diverse microbial community that coevolves with the host. The composition and structure of the gut microbiota and the metabolism of tryptophan (Trp) significantly change in older adults with frailty and sarcopenia. The gut microbiota participates in regulating the Trp metabolic pathways of kynurenine (Kyn), 5-hydroxytryptamine (5-HT), and indole in the gastrointestinal tract. The Trp metabolites derived from the gut microbiota may synergistically promote the occurrence of age-related frailty and sarcopenia by promoting inflammation in the intestines, nervous system, and muscles. The role and mechanisms of the gut microbiota, Trp metabolism, and inflammaging in age-related frailty and sarcopenia may be a worthwhile research direction to help promote healthy aging.


Assuntos
Fragilidade , Microbioma Gastrointestinal , Sarcopenia , Humanos , Idoso , Triptofano/metabolismo , Microbioma Gastrointestinal/fisiologia , Idoso Fragilizado
5.
Nat Chem Biol ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212578

RESUMO

Ferroptosis is iron-dependent oxidative cell death. Labile iron and polyunsaturated fatty acid (PUFA)-containing lipids are two critical factors for ferroptosis execution. Many processes regulating iron homeostasis and lipid synthesis are critically involved in ferroptosis. However, it remains unclear whether biological processes other than iron homeostasis and lipid synthesis are associated with ferroptosis. Using kinase inhibitor library screening, we discovered a small molecule named CGI1746 that potently blocks ferroptosis. Further studies demonstrate that CGI1746 acts through sigma-1 receptor (σ1R), a chaperone primarily located at mitochondria-associated membranes (MAMs), to inhibit ferroptosis. Suppression of σ1R protects mice from cisplatin-induced acute kidney injury hallmarked by ferroptosis. Mechanistically, CGI1746 treatment or genetic disruption of MAMs leads to defective Ca2+ transfer, mitochondrial reactive oxygen species (ROS) production and PUFA-containing triacylglycerol accumulation. Therefore, we propose a critical role for MAMs in ferroptosis execution.

6.
Nat Commun ; 14(1): 6921, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903816

RESUMO

Ca2+ signal-generation through inter-membrane junctional coupling between endoplasmic reticulum (ER) STIM proteins and plasma membrane (PM) Orai channels, remains a vital but undefined mechanism. We identify two unusual overlapping Phe-His aromatic pairs within the STIM1 apical helix, one of which (F394-H398) mediates important control over Orai1-STIM1 coupling. In resting STIM1, this locus is deeply clamped within the folded STIM1-CC1 helices, likely near to the ER surface. The clamped environment in holo-STIM1 is critical-positive charge replacing Phe-394 constitutively unclamps STIM1, mimicking store-depletion, negative charge irreversibly locks the clamped-state. In store-activated, unclamped STIM1, Phe-394 mediates binding to the Orai1 channel, but His-398 is indispensable for transducing STIM1-binding into Orai1 channel-gating, and is spatially aligned with Phe-394 in the exposed Sα2 helical apex. Thus, the Phe-His locus traverses between ER and PM surfaces and is decisive in the two critical STIM1 functions-unclamping to activate STIM1, and conformational-coupling to gate the Orai1 channel.


Assuntos
Sinalização do Cálcio , Cálcio , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Sinalização do Cálcio/fisiologia
8.
Int J Mol Sci ; 24(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37685995

RESUMO

The heart requires a variety of energy substrates to maintain proper contractile function. Glucose and long-chain fatty acids (FA) are the major cardiac metabolic substrates under physiological conditions. Upon stress, a shift of cardiac substrate preference toward either glucose or FA is associated with cardiac diseases. For example, in pressure-overloaded hypertrophic hearts, there is a long-lasting substrate shift toward glucose, while in hearts with diabetic cardiomyopathy, the fuel is switched toward FA. Stromal interaction molecule 1 (STIM1), a well-established calcium (Ca2+) sensor of endoplasmic reticulum (ER) Ca2+ store, is increasingly recognized as a critical player in mediating both cardiac hypertrophy and diabetic cardiomyopathy. However, the cause-effect relationship between STIM1 and glucose/FA metabolism and the possible mechanisms by which STIM1 is involved in these cardiac metabolic diseases are poorly understood. In this review, we first discussed STIM1-dependent signaling in cardiomyocytes and metabolic changes in cardiac hypertrophy and diabetic cardiomyopathy. Second, we provided examples of the involvement of STIM1 in energy metabolism to discuss the emerging role of STIM1 in the regulation of energy substrate preference in metabolic cardiac diseases and speculated the corresponding underlying molecular mechanisms of the crosstalk between STIM1 and cardiac energy substrate preference. Finally, we briefly discussed and presented future perspectives on the possibility of targeting STIM1 to rescue cardiac metabolic diseases. Taken together, STIM1 emerges as a key player in regulating cardiac energy substrate preference, and revealing the underlying molecular mechanisms by which STIM1 mediates cardiac energy metabolism could be helpful to find novel targets to prevent or treat cardiac metabolic diseases.


Assuntos
Cardiomiopatias Diabéticas , Cardiopatias , Molécula 1 de Interação Estromal , Humanos , Cardiomegalia , Glucose , Miócitos Cardíacos , Proteínas de Neoplasias
9.
Int J Biol Macromol ; 253(Pt 3): 126937, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37722647

RESUMO

The prototypical calcium release-activated calcium (CRAC) channel, composed of STIM1 and Orai1, is a sought-after drug target for treating autoimmune disorders. Herein, we identified two novel and selective CRAC channel inhibitors, the indole-like compound C63368 and pyrazole core-containing compound C79413, potently and reversibly inhibiting the CRAC channel with low micromolar IC50s and sparing various off-target ion channels. These two compounds did not inhibit STIM1 activation or its coupling with Orai1, nor did they affect the channel's calcium-dependent fast inactivation. Instead, they directly acted on the Orai1 protein, with the channel's pore geometry profoundly affecting their potencies. In vitro, C63368 and C79413 effectively inhibited Jurkat cell proliferation and cytokines production in human T lymphocytes. Intragastric administration of C63368 and C79413 to mice yielded great therapeutic benefits in psoriasis and colitis animal models of autoimmune disorders, reducing serum cytokines production and significantly relieving pathological symptoms. It's worth noting, that this study provided the first insight into the characterization and mechanistic investigation of an indole-like CRAC channel antagonist. Altogether, the identification of these two highly selective CRAC channel antagonists, coupled with the elucidation of their action mechanisms, not only provides valuable template molecules but also offers profound insights for drug development targeting the CRAC channel.


Assuntos
Doenças Autoimunes , Canais de Cálcio Ativados pela Liberação de Cálcio , Humanos , Camundongos , Animais , Proteínas de Membrana/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Indóis/farmacologia , Citocinas/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-37458939

RESUMO

Fungal polysaccharides have attracted wide attention because of their medical pharmaceutical and health care value. So far, many efforts have been made in strain improvement to produce polysaccharides on a large scale at low cost. Here, a novel cold plasma-induced strain improvement technology was employed to pretreat Pleurotus ostreatus CGMCC 5.374 by radio-frequency (RF) low-vacuum cold plasma (LVCP) for the purpose of obtaining a high-yield polysaccharide strain. The optimum pretreatment conditions including discharge power, treatment time, and working pressure were determined by single factor and orthogonal experiment in succession. Furthermore, transcriptome analysis was conducted to study the effects of RF-LVCP on cell metabolism and proliferation. Results showed that under the optimal condition of discharge power of 130 W, treatment time of 25 s and working pressure of 140 Pa, polysaccharide content in mycelium was increased by 3.16% after 6 days in comparison to the original strain. Transcriptome analysis showed that RF-LVCP is helpful for specific gene transcription profiles, Gene Ontology (GO) and KEGG pathways, of which the differentially expressed genes (DEGs) were mainly involve with the up-regulation of polysaccharide transport, physiology, synthesis and metabolism, as well as the down-regulation of polysaccharide hydrolysis and macromolecular degradation.

11.
Biotechnol Biofuels Bioprod ; 16(1): 102, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322470

RESUMO

BACKGROUND: Lignocellulose-derived aldehyde inhibitors seriously blocked the biorefinery of biofuels and biochemicals. To date, the economic production of lignocellulose-based products heavily relied on high productivities of fermenting strains. However, it was expensive and time-consuming for the achievable rational modification to strengthen stress tolerance robustness of aldehyde inhibitors. Here, it aimed to improve aldehyde inhibitors tolerance and cellulosic bioethanol fermentability for the chassis Zymomonas mobilis ZM4 pretreated using energy-efficient and eco-friendly cold plasma. RESULTS: It was found that bioethanol fermentability was weaker in CSH (corn stover hydrolysates) than that in synthetic medium for Z. mobilis, and thus was attributed to the inhibition of the lignocellulose-derived aldehyde inhibitors in CSH. Convincingly, it further confirmed that the mixed aldehydes severely decreased bioethanol accumulation through additional aldehydes supplementary assays in synthetic medium. After assayed under different processing time (10-30 s), discharge power (80-160 W), and working pressure (120-180 Pa) using cold atmosphere plasma (CAP), it achieved the increased bioethanol fermentability for Z. mobilis after pretreated at the optimized parameters (20 s, 140 W and 165 Pa). It showed that cold plasma brought about three mutation sites including ZMO0694 (E220V), ZMO0843 (L471L) and ZMO0843 (P505H) via Genome resequencing-based SNPs (single nucleotide polymorphisms). A serial of differentially expressed genes (DEGs) were further identified as the potential contributors for stress tolerance via RNA-Seq sequencing, including ZMO0253 and ZMO_RS09265 (type I secretion outer membrane protein), ZMO1941 (Type IV secretory pathway protease TraF-like protein), ZMOr003 and ZMOr006 (16S ribosomal RNA), ZMO0375 and ZMO0374 (levansucrase) and ZMO1705 (thioredoxins). It enriched cellular process, followed by metabolic process and single-organism process for biological process. For KEGG analysis, the mutant was also referred to starch and sucrose metabolism, galactose metabolism and two-component system. Finally, but interestingly, it simultaneously achieved the enhanced stress tolerance capacity of aldehyde inhibitors and bioethanol fermentability in CSH for the mutant Z. mobilis. CONCLUSIONS: Of several candidate genetic changes, the mutant Z. mobilis treated with cold plasma was conferred upon the facilitated aldehyde inhibitors tolerance and bioethanol production. This work would provide a strain biocatalyst for the efficient production of lignocellulosic biofuels and biochemicals.

12.
Artigo em Inglês | MEDLINE | ID: mdl-37317920

RESUMO

BACKGROUND: STIM- and Orai-mediated store operated calcium entry (SOCE) is a ubiquitous Ca2+ signaling process, crucial for the proper function of immune, muscle and neuronal systems. To treat SOCE-related disorder or diseases of these systems, and to mechanistically dissect activation and function of SOCE, specific SOCE inhibitors are needed. However, strategies for developing new SOCE modifiers are still limited.

Methodology: In this study, we identified a novel SOCE inhibitor named 2PHDO from a small pool of Chinese herbal extracts used for treating psoriasis. It could block SOCE and SOCE-mediated NFAT translocation in multiple types of cells with a half inhibitory concentration around 1 µM. At this concentration, 2PHDO was specific for SOCE. Mechanistically, 2PHDO didn't affect the activation of STIM1 or its physical coupling with Orai1. Rather, 2PHDO inhibited SOCE via its actions on Orai1.

Results: 2PHDO may serve as a good template for developing new medicines aiming to treat SOCE related diseases.

Conclusion: Overall, we proved the feasibility of screening and identification of novel SOCE inhibitors from active monomers of Chinese herbal medicine.

13.
Yi Chuan ; 45(5): 395-408, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37194587

RESUMO

STIM1 (stromal interaction molecule 1) is one of the key components of the store operated Ca2+ entry channel (SOCE), which is located on the endoplasmic reticulum membrane and highly expressed in most kinds of tumors. STIM1 promotes tumorigenesis and metastasis by modulating the formation of invadopodia, promoting angiogenesis, mediating inflammatory response, altering the cytoskeleton and cell dynamics. However, the roles and mechanism of STIM1 in different tumors have not been fully elucidated. In this review, we summarize the latest progress and mechanisms of STIM1 in tumorigenesis and metastasis, thereby providing insights and references for the study on STIM1 in the field of cancer biology in the future.


Assuntos
Cálcio , Carcinogênese , Humanos , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Carcinogênese/genética , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Proteínas de Neoplasias/genética
14.
Nat Methods ; 20(6): 918-924, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37081094

RESUMO

Genetically encoded calcium indicators (GECIs) are indispensable tools for real-time monitoring of intracellular calcium signals and cellular activities in living organisms. Current GECIs face the challenge of suboptimal peak signal-to-baseline ratio (SBR) with limited resolution for reporting subtle calcium transients. We report herein the development of a suite of calcium sensors, designated NEMO, with fast kinetics and wide dynamic ranges (>100-fold). NEMO indicators report Ca2+ transients with peak SBRs around 20-fold larger than the top-of-the-range GCaMP6 series. NEMO sensors further enable the quantification of absolution calcium concentration with ratiometric or photochromic imaging. Compared with GCaMP6s, NEMOs could detect single action potentials in neurons with a peak SBR two times higher and a median peak SBR four times larger in vivo, thereby outperforming most existing state-of-the-art GECIs. Given their high sensitivity and resolution to report intracellular Ca2+ signals, NEMO sensors may find broad applications in monitoring neuronal activities and other Ca2+-modulated physiological processes in both mammals and plants.


Assuntos
Cálcio , Neurônios , Animais , Cálcio/metabolismo , Neurônios/fisiologia , Sinalização do Cálcio/fisiologia , Indicadores e Reagentes , Mamíferos/metabolismo
15.
Front Pharmacol ; 14: 1111798, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817139

RESUMO

Introduction: Psoriasis is an inflammatory autoimmune skin disease that is hard to cure and prone to relapse. Currently available global immunosuppressive agents for psoriasis may cause severe side effects, thus it is crucial to identify new therapeutic reagents and druggable signaling pathways for psoriasis. Methods: To check the effects of SOCE inhibitors on psoriasis, we used animal models, biochemical approaches, together with various imaging techniques, including calcium, confocal and FRET imaging. Results and discussion: Store operated calcium (Ca2+) entry (SOCE), mediated by STIM1 and Orai1, is crucial for the function of keratinocytes and immune cells, the two major players in psoriasis. Here we showed that a natural compound celastrol is a novel SOCE inhibitor, and it ameliorated the skin lesion and reduced PASI scores in imiquimod-induced psoriasis-like mice. Celastrol dose- and time-dependently inhibited SOCE in HEK cells and HaCaT cells, a keratinocyte cell line. Mechanistically, celastrol inhibited SOCE via its actions both on STIM1 and Orai1. It inhibited Ca2+ entry through constitutively-active Orai1 mutants independent of STIM1. Rather than blocking the conformational switch and oligomerization of STIM1 during SOCE activation, celastrol diminished the transition from oligomerized STIM1 into aggregates, thus locking STIM1 in a partially active state. As a result, it abolished the functional coupling between STIM1 and Orai1, diminishing SOCE signals. Overall, our findings identified a new SOCE inhibitor celastrol that suppresses psoriasis, suggesting that SOCE pathway may serve as a new druggable target for treating psoriasis.

16.
J Med Chem ; 66(1): 1027-1047, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36595482

RESUMO

Depleting NAD+ by blocking its biosynthesis has emerged as an attractive anticancer strategy. Simultaneous blockade of NAD+ production from the salvage and de novo synthesis pathways by targeting NAMPT and IDO1 could achieve more effective NAD+ reduction and, subsequently, more robust antitumor efficacy. Herein, we report the discovery of the first series of dual NAMPT and IDO1 inhibitors according to multitarget drug rationales. Compound 10e has good and balanced inhibitory potencies against NAMPT and IDO1, and significantly inhibits both proliferation and migration of a NSCLC cell line resistant to taxol and FK866 (A549/R cells). Compound 10e also displays potent antitumor efficacy in A549/R xenograft mouse models with no significant toxicity. Moreover, this compound enhances the susceptibility of A549/R cells to taxol in vitro and in vivo. This work provides an efficient approach to targeting NAD+ metabolism in the area of cancer therapy, especially in the context of drug resistance.


Assuntos
Neoplasias Pulmonares , Nicotinamida Fosforribosiltransferase , Humanos , Animais , Camundongos , Nicotinamida Fosforribosiltransferase/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase , NAD/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico
17.
BMC Med Genomics ; 15(1): 242, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36419120

RESUMO

BACKGROUND: MYCN amplification (MNA) has been proved to be related to poor prognosis in neuroblastoma (NBL), but the MYCN-related immune signatures and genes remain unclear. METHODS: Enrichment analysis was used to identify the significant enrichment pathways of differentially expressed immune-related genes (DEIRGs). Weight gene coexpression network analysis (WGCNA) was applied to reveal the correlation between these DEIRGs and MYCN status. Univariate and multivariate Cox analyses were used to construct risk model. The relevant fractions of immune cells were evaluated by CIBERSORT and single-sample gene set enrichment analysis (ssGSEA). RESULTS: Five genes, including CHGA, PTGER1, SHC3, PLXNC1, and TRIM55 were enrolled into the risk model. Kaplan-Meier survival analysis and receiver operating characteristic (ROC) curve showed that our model performed well in predicting the outcomes of NBL (3-years AUC = 0.720, 5-year AUC = 0.775, 10-years AUC = 0.782), which has been validated in the GSE49711 dataset and the E-MTAB-8248 dataset. By comparing with the tumor immune dysfunction and exclusion (TIDE) and tumor inflammation signature (TIS), we further proved that our model is reliable. Univariate and multivariate Cox regression analyses indicated that the risk score, age, and MYCN can serve as independent prognostic factors in the E-MATB-8248. Functional enrichment analysis showed the DEIRGs were enriched in leukocyte adhesion-related signaling pathways. Gene set enrichment analysis (GSEA) revealed the significantly enriched pathways of the five MYCN-related DEIRGs. The risk score was negatively correlated with the immune checkpoint CD274 (PD-L1) but no significant difference with the TMB. We also confirmed the prognostic value of our model in predicting immunotherapeutics. CONCLUSION: We constructed and verified a signature based on DEIRG that related to MNA and predicted the survival of NBL based on relevant immune signatures. These findings could provide help for predicting prognosis and developing immunotherapy in NBL.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neuroblastoma , Humanos , Biomarcadores Tumorais/genética , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Prognóstico
18.
Biochem J ; 479(17): 1857-1875, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36111979

RESUMO

Membrane contact sites (MCSs) mediate crucial physiological processes in eukaryotic cells, including ion signaling, lipid metabolism, and autophagy. Dysregulation of MCSs is closely related to various diseases, such as type 2 diabetes mellitus (T2DM), neurodegenerative diseases, and cancers. Visualization, proteomic mapping and manipulation of MCSs may help the dissection of the physiology and pathology MCSs. Recent technical advances have enabled better understanding of the dynamics and functions of MCSs. Here we present a summary of currently known functions of MCSs, with a focus on optical approaches to visualize and manipulate MCSs, as well as proteomic mapping within MCSs.


Assuntos
Diabetes Mellitus Tipo 2 , Retículo Endoplasmático , Diabetes Mellitus Tipo 2/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Membranas Mitocondriais/metabolismo , Optogenética , Proteômica
19.
Elife ; 112022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35439114

RESUMO

The dual-specificity tyrosine phosphorylation-regulated kinase DYRK2 has emerged as a critical regulator of cellular processes. We took a chemical biology approach to gain further insights into its function. We developed C17, a potent small-molecule DYRK2 inhibitor, through multiple rounds of structure-based optimization guided by several co-crystallized structures. C17 displayed an effect on DYRK2 at a single-digit nanomolar IC50 and showed outstanding selectivity for the human kinome containing 467 other human kinases. Using C17 as a chemical probe, we further performed quantitative phosphoproteomic assays and identified several novel DYRK2 targets, including eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and stromal interaction molecule 1 (STIM1). DYRK2 phosphorylated 4E-BP1 at multiple sites, and the combined treatment of C17 with AKT and MEK inhibitors showed synergistic 4E-BP1 phosphorylation suppression. The phosphorylation of STIM1 by DYRK2 substantially increased the interaction of STIM1 with the ORAI1 channel, and C17 impeded the store-operated calcium entry process. These studies collectively further expand our understanding of DYRK2 and provide a valuable tool to pinpoint its biological function.


Assuntos
Cálcio , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Cálcio/metabolismo , Humanos , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
20.
Biomaterials ; 283: 121452, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35286856

RESUMO

Here, inspired by the concept of supramolecular inclusion complex, we successfully fabricate metformin (Met)-based supramolecular nanodrugs with the Aß-responsive on-demand drug release for synergistic Alzheimer's disease (AD) therapy via enhancing microglial Aß clearance. Interestingly, the introduction of low-dosage Met (1.1 mg/kg) can not only significantly improve the structural stability of nanodrugs but also exert a synergistic anti-dementia effect with donepezil (Don). Besides, such nanodrugs with outstanding physiological stability can selectively penetrate the blood-brain barrier (BBB), target brain, increase efficient uptake of microglia and neurons, and then achieve simultaneous spatiotemporal on-demand drug release under stimuli of the overexpressed amyloid-beta (Aß). Furthermore, Met and Don released from nanodrugs exhibit a superior synergistic anti-dementia effect by enhancing microglial phagocytosis and Aß clearance through the lysosomal pathway. Taken together, we report a synergistic strategy based on Aß-responsive supramolecular nanodrugs for AD therapy, which can be expected to provide a novel clinical therapeutic idea for ameliorating central nervous system disease.


Assuntos
Doença de Alzheimer , Metformina , Nanopartículas , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Humanos , Metformina/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Microglia , Nanopartículas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...